Florian Holsboer

Scientific publications

Auswahl von 100 Arbeiten aus über 1.000 Veröffentlichungen seit 1993:

  1. Spengler, D. et al.: Differential signal transduction patterns of five splice variants of the PACAP receptor. Nature 365: 170-175 (1993)
  2. Rupprecht, R. at al.: Progesterone receptor-mediated effects of neuroactive steroids. Neuron 11: 523-530 (1993)
  3. Trapp, T. et al.: Heterodimerization between mineralocorticoid and glucocorticoid receptor: a new principle of glucocorticoid action in the CNS. Neuron 13: 1-6 (1994)
  4. Lauer, C.J. et al.: In quest of identifying vulnerability markers for psychiatric disorders by all-night polysomnography. Archives of General Psychiatry 52: 145-153 (1995)
  5. Holsboer, F., Barden, N.: Antidepressants and HPA regulation. Endocrine Reviews 17: 187-205 (1996)
  6. Patchev, V.K. et al.: Neonatal treatment of rats with the neuroactive steroid tetrahydrodeoxycorticosterone (THDOC) abolishes the behavioral and neuroendocrine consequences of adverse early life events. The Journal of Clinical Investigations 99: 962-966 (1997)
  7. Behl, C. et al.: Neuroprotection against oxidative stress by estrogens: structure-activing relationship. Molecular Pharmacology 51: 535-541 (1997)
  8. Timpl, P. et al.: Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nature Genetics 19:162-166 (1998)
  9. Rupprecht, R., Holsboer, F.: Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends in Neuroscience 22:410-416 (1999)
  10. Behl, C., Holsboer, F.: The female sex hormone oestrogen as a neuroprotectant. Trends in Pharmacological Sciences, 20:441-444 (1999)
  11. Hrabé de Angelis, M.H. et al.: Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genetics 25:444-447 (2000)
  12. Holsboer, F.: The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23:477-501 (2000)
  13. Holsboer, F.: Antidepressant drug discovery in the postgenomic era. World Journal of Biological Psychiatry 2:165-177 (2001)
  14. Keck, M.E. et al.: The anxiolytic effect of the CRH1 receptor antagonist R121919 depends on innate emotionality in rats. European Journal of Neuroscience 13:373-380 (2001)
  15. Gesing, A. et al.: Psychological stress increases hippocampal mineralocorticoid receptor levels: involvement of corticotropin-releasing hormone. Journal of Neuroscience 21:4822-4829 (2001)
  16. Sillaber, I. et al.: Enhanced and delayed stress-induced alcohol drinking in mice lacking functional CRH1 receptors. Science 296:931-933 (2002)
  17. Keck, M.E. et al.: Vasopressin mediates the response of the combined dexamethasone/CRH test in hyper-anxious rats: Implications for the pathogenesis of affective disorders. Neuropsychopharmacology 26: 94-105 (2002)
  18. Ströhle, A. et al.: Induced panic attacks shift GABAA receptor modulatory neuroactive steroid composition in patients with panic disorder. Archives of General Psychiatry 60: 161-168 (2003)
  19. Müller, M.B. et al.: Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nature Neuroscience 6: 1100-1107 (2003)
  20. Oshima, A. et al.: Altered serotonergic neurotransmission but normal hypothalamic-pituitary- adrenocortical axis activity in mice chronically treated with the corticotropin-releasing hormone receptor type 1 antagonist NBI 30775. Neuropsychopharmacology 28: 2148-2159 (2003)
  21. Schmidt, U. et al.: Essential role of the unusual DNA-binding motif of BAG-1 for inhibition of the glucocorticoid receptor. Journal of Biological Chemistry 278: 4926-4931 (2003)
  22. Holsboer, F.: Corticotropin-releasing hormone modulators and depression. Current Opinion in Investigational Drugs 4: 46-50 (2003)
  23. Uhr, M. et al.: Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption. Biological Psychiatry 54: 840-846 (2003)
  24. Murgatroyd, C et al.: Impaired repression at a vasopressin promoter polymorphism underlies overexpression of vasopressin in a rat model of trait anxiety. Journal of Neuroscience 24: 7762- 7770 (2004)
  25. Binder, E. et al.: Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nature Genetics 36:1319-1325 (2004)
  26. Vila, G. et al.: Sonic hedgehog regulates CRH signal transduction in the adult pituitary. FASEB 19:281-283 (2005)
  27. De Kloet, R. et al.: Stress and the brain: from adaptation to disease. Nature Reviews Neuroscience 6:463-475 (2005)
  28. Refojo, D. et al.: CRH activates ERK1/2 MAPK in specific brain areas. Proceedings of the National Academy of Sciences (PNAS) 102:6183-6188 (2005)
  29. Wochnik, G.M. et al.: FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. Journal of Biological Chemistry 280:4609-4616 (2005)
  30. Müller, M.B., Holsboer, F.: Mice with mutations in the HPA-system as models for symptoms of depression. Biological Psychiatry 59:1104-1115 (2006)
  31. Binder, E., Holsboer, F.: Pharmacogenomics and antidepressant drugs. Annals of Medicine 38:82-94 (2006)
  32. Lucae, S. et al.: P2RX7, a gene coding for a purinergic ligand-gated ion channel, is associated with major depressive disorder. Human Molecular Genetics 15:2438-2445 (2006)
  33. Arzt, E., Holsboer, F.: CRF signaling: molecular specificity for drug targeting in the CNS. Trends in Pharmacological Sciences 27:531-538 (2006)
  34. Barden, N. et al.: Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. American Journal of Medical Genetics 141B:374-382 (2006)
  35. Winkelmann, J. et al.: Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nature Genetics 39:1000-1006 (2007)
  36. Carbia-Nagashima, A. et al.: RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 131:309-323 (2007)
  37. Uhr, M. et al.: Polymorphisms in the drug-transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 57:203-209 (2008)
  38. Holsboer, F.: How can we realize the promise of personalized antidepressant medicines? Nature Reviews Neuroscience 9:638-646 (2008)
  39. Hennings, J.M. et al.: Clinical characteristics and treatment outcome in a representative sample of depressed inpatients - Findings from the Munich Antidepressant Response Signature (MARS) project. Journal of Psychiatric Research 43:215-229 (2009)
  40. Lu, A., Steiner, M.et al.: Conditional CRH overexpressing mice: an animal model for stress-elicited pathologies and treatments that target the central CRH system. Molecular Psychiatry 13:1028- 1042 (2008)
  41. Kimura, M et al.: Conditional CRH overexpression in the mouse brain enhances REM sleep. Molecular Psychiatry 15:154-165 (2010)
  42. Rupprecht, R. et al.: Translocator protein (18 kDa) as a target for anxiolytics without benzodiazepine-like side effects. Science 325:490-493 (2009)
  43. Yehuda, R. et al.: Gene expression patterns associated with PTSD following exposure to the attacks on the World Trade Center attacks. Biological Psychiatry 66:708-711 (2009)
  44. Ising, M. et al.: A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Archives of General Psychiatry 66:966- 975 (2009)
  45. Murgatroyd, C. et al.: Dynamic DNA methylation programs persistent adverse effects of early- life stress. Nature Neuroscience 12:1559-1566 (2009)
  46. Kohli, M.A. et al.: Association of genetic variants in the neurotrophic receptor-encoding gene NTRK2 and a lifetime history of suicide attempts in depressed patients. Archives of General Psychiatry 67:348-359 (2010)
  47. Holsboer, F., Ising, M.: Stress hormone regulation: biological role and translation into therapy. Annual Review of Psychology 61:81-109 (2010)
  48. McMahon, F.J. et al. and the BiGs Consortium: Meta-analysis of genome-wide association data detects a risk locus for major mood disorders on chromosome 3p21.1. Nature Genetics 42:128- 131 (2010)
  49. Kohli, M. et al.: The neuronal transporter gene SLC6A15 confers risk to major depression. Neuron 70:252-265 (2011)
  50. Refojo, D. et al.: Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1. Science 333:1903-1907 (2011)
  51. Mehta, D. et al.: Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: evidence from endocrine and gene expression studies. Archives of General Psychiatry 68:901-910 (2011)
  52. Filiou, M. et al.: Proteomics and metabolomics analyses of a trait anxiety mouse model reveals divergent mitochondrial pathways. Biological Psychiatry 70:1074-1082 (2011)
  53. Paez-Pereda, M. et al.: Corticotropin releasing factor receptor antagonists for major depressive disorder. Expert Opinion on Investigational Drugs 20:519-535 (2011)
  54. Ditzen, C. et al.: Cerebrospinal fluid biomarkers for major depression confirm relevance of associated pathophysiology. Neuropsychopharmacology 37:1013-1025 (2012)
  55. Menke, A. et al.: Dexamethasone stimulated gene expression in peripheral blood is a sensitive marker for glucocorticoid receptor resistance in depressed patients. Neuropsychopharmacology, Epub ahead of print, January 2012
  56. Griebel, G., Holsboer, F. : Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning? Nature Reviews Drug Discovery 11:462-478 (2012)
  57. Schmidt, M. et al.: The prospect of FKBP51 as drug target. ChemMedChem. 2012 Aug; 7(8): 1351- 9
  58. Wagner, K. et al.: Differences in FKBP51 regulation following chronic social defeat stress correlate with individual stress sensitivity: Influence of paroxetine treatment. Neuropsychopharmacology 37:2797-2808 (2012)
  59. Zimmermann, N. et al.: Antidepressants inhibit DNA methyltransferase 1 through reducing G9a levels. Biochemical Journal 448:93-102 (2012)
  60. Hausch, F., Holsboer, F.: Structural Biology: Snapshot of an activated peptide receptor. Nature 490:492-493 (2012)
  61. Hausch, F., Holsboer, F.: The seven pillars of molecular pharmacology: GPCR research honored with Nobel Prize for chemistry. Angewandte Chemie 51:12172-12175 (2012)
  62. Klengel, T. et al.: Allele-specific DNA demethylation in FKBP5: A molecular mediates of gene- childhood trauma interactions. Nature Neuroscience 16:33-41 (2013)
  63. Maccarrone, G. et al.: Psychiatric patient stratification using biosignatures based on cerebrospinal fluid protein expression clusters. J Psychiatr Res 47(11):1572-80 (2013)
  64. Sämann, P.G. et al.: Prediction of antidepressant treatment response from gray matter volume across diagnostic categories. Eur Neuropsychopharmacol 23: 1503-15 (2013)
  65. Breitenstein, B. et al.: The clinical application of ABCB1 genotyping in antidepressant treatment: a pilot study. CNS Sectr 23:1-11 (2013)
  66. Wang, X.D. et al.: Nectin-3 links CRHR1 signaling to stress-induced memory deficits and spine loss. Nat Neurosci 16(6):706-13 (2013)
  67. Dine, J. et al.: Identification of a role for the ventral hippocampus in neuropeptide S-elicited anxiolysis. PLoS One 8(3):e60219 (2013)
  68. Druker, J. et al.: RSUME enhances glucocorticoid receptor SUMOylation and transcriptional activity. Mol Cell Biol 33(11):2116-27 (2013)
  69. Bonfiglio, J.J. et al.: B-Raf and CRHR1 internalization mediate biphasic ERK1/2 activation by CRH in hippocampal HT22 cells. Mol Endocrinol 27(3):491-510 (2013)
  70. Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium: A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 18(4):497- 511 (2013)
  71. Rucker, J.J.: Genome-wide association analysis of copy number variation in recurrent depressive disorder. Mol Psychiatry 18(2):183-9 (2013)
  72. Martins-de-Souza, D. et al.: Blood mononuclear cell proteome suggests integrin and Ras signaling as critical pathways for antidepressant treatment response. Biological Psychiatry 76:15-17 (2014)
  73. Höhne, N. et al.: Increased HPA axis response to psychosocial stress in remitted depression: the influenced by coping style. Biological Psychiatry 103:267-275 (2014)
  74. Schmidt, U. et al.: Searching for non-genetic molecular and imaging PTSD risk and resilience markers: Systematic review of literature and design of the German Armed Forces PTSD biomarker study. Psychoneuroendocrinology 51:444-458 (2015)
  75. Labermaier, C. et al.: A polymorphism in the Crhr1 gene determines stress vulnerability in male mice. Endocrinology 155:2500-2510 (2014)
  76. Holsboer, F.: Redesigning antidepressant drug discovery. Dialogues in Clinical Neuroscience 16:5-7 (2014)
  77. Gassen, N. et al.: Association of FKBP51 with priming of autophagy pathways and mediation of antidepressant treatment response evidence in cells, mice and humans. PLoS Med 11, online (2014)
  78. Bockmühl, Y. et al.: Methylation at the CpG island shore region upregulates Nr3c1 promoter activity after early-life stress. Epigenetics 10:247-257 (2015)
  79. Gassen, N. et al.: FKBP51 inhibits GSK3ß and augments the effects of distinct psychotropic medications. Molecular Psychiatry, 21: 277-289 (2016)
  80. Sotnikov, S. et al.: Bidirectional rescue of extreme genetic predispositions to anxiety: impact of CRH receptor 1 as epigenetic plasticity gene in the amygdala. Translational Psychiatry 4: 1-8 (2014)
  81. Hartmann, J. et al.: Pharmacological inhibition of the psychiatric risk factor FKBP51 has anxiolytic properties. Journal of Neuroscience 35: 9007-9016 (2015)
  82. Flandreau, E. et al.: Cell type-specific modifications of corticotropin-releasing factor (CRF) and its type 1 receptor (CRF1) on startle behavior and sensorimotor gating. Psychoneuroendocrinology 53: 16-28 (2015)
  83. Schmidt, U. et al.: A role for synapsin in FKBP51 modulation of stress responsiveness: Convergent evidence from animal and human studies. Psychoneuroendocrinology 52: 43-58 (2015)
  84. Breitenstein, B. et al.: ABCB1 gene variants and antidepressant treatment outcome: a meta- analysis. American Journal of Medical Genetics 168B: 274-283 (2015)
  85. Yehuda, R. et al.: Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biological Psychiatry 80: 372-380 (2016)
  86. Gassen, N. et al.: FKBP51 inhibits GSK3ß and augments the effects of distinct psychotropic medications. Molecular Psychiatry 21: 277-289 (2016)
  87. Breitenstein, B. et al.: Association of ABCB1 gene variants, plasma antidepressant concentration, and treatment response: Results from a randomized clinical study. Journal of Psychiatric Research 73: 86-95 (2016)
  88. Waters, R. et al.: Evidence for the role of corticotropin-releasing factor in major depressive disorder. Neuroscience Biobehavioral Reviews 58: 63-78 (2015)
  89. Kirmeier, T. et al.: Azidobupramine, an antidepressant-derived bifunctional neurotransmitter transporter ligand allowing covalent labeling and attachment of fluorophores. PLoS One, online February 2016
  90. Aprile-Garcia, F. et al.: Co-expression of wild-type P2X7R with Gln460Arg variant alters receptor function. PLoS One, online March 2016
  91. The Network and Pathway Analysis Subgroup of the Psychiatric Genomics Consortium: Psychiatric genome-wide association study analysis implicate neuronal, immune and histone pathways. Nature Neuroscience 18: 199-209 (2015)
  92. Kirmeier, T. et al.: Azidobupramine, an antidepressant-derived bifunctional neurotransmitter transporter ligand allowing covalent labeling and attachment of fluorophores. PloS One, online February 2016
  93. Aprile-Garcia, F. et al.: Co-expression of wild-type P2X7R with Gln460Arg variant alters receptor function. PloS One, online March 2016
  94. Antunica-Noguerol, M. et al.: The activity of the glucocorticoid receptor is regulated by SUMO conjugation to FKBP51. Cell Death Differ 23: 1579-1591 (2016)
  95. Adams, H. et al.: Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience 19: 1569-1582 (2016)
  96. Franke, B., ENIGMA Consortium et al.: Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nature Neuroscience 19: 420-431 (2016)
  97. Turck, C. et al.: Proteomic differences in blood plasma associated with antidepressant treatment response. Frontiers in Molecular Neuroscience 10, Artikel 272 (2017)
  98. Carillo-Roa, T. et al.: Common genes associated with antidepressant response in mouse and man identify key role of glucocorticoid receptor sensitivity. PloS Biology, Dec. 28 (2017)
  99. Ising, M. et al.: FKBP5 gene expression predicts antidepressant treatment outcome in depression. International Journal of Molecular Sciences 20 (2019)
  100. Satizabal, C. et al.: Genetic architecture of subcortical brain structures in 38,854 individuals worldwide. Nature Genetics (2019)
Florian Holsboer